
Point Kinetics

T
HE POINT KINETICS MODEL can be obtained directly

from the space and time dependent transport equations.

However these equations are too complicated to be of

any practical application. The diffusion approximation,

obtained by keeping only the PI terms of the spherical harmonics

expansion in the angular variable of the directional flux is frequently

used in neutronic analysis. This is the diffusion approximation, which

we use here.

Derivation

Point kinetics is very interesting because of the apparent simplicity of

the resulting differential equations. The method is very frequently

used, but the underlying difficulties in obtaining the parameters are
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hidden. In spite of all this, many inherent characteristics of the dynam

ics of nuclear cores can be deduced from these equations. Also, these

same equations provide a tool for the analysis, the comparison and the

practical implementation of various numerical schemes that may

eventually be used in more complex situations. An integration tech

nique that does not pass the test of point kinetics will certainly not be

used in space-.time kinetics. Point kinetics can thus play the role of an

experimental bench before expensive problems are attempted with

more advanced methods.

The main idea behind point kinetics is to separate the flux into two fac

tors. The first one being a shape function depending both on space and.

time, and a second factor depending only on time, in the following

fashion

[4>(r, t)J = [S(r, t)]T(t) (EQ73)

Note that this equation for the flux does not involve any approxima

tion, and that the equality is maintained.However, the shape function

[S(r, t)] depends both on space and time in this approach.We now

introduce a column vector of weight functions

[W(f)] =
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whose function will be to give rise to general equations. In effect, equa

tion (73) presents a degree of arbitrariness in the choice of

[S (r, t)] and of T(t) ; only the product of the two variables needs to

be specified. We will use [W(r)] to introduce normalization con

straints which shall be obeyed at all times during a transient. Specifi

cally, we define

and it follow that, following (73), [S(r, t)] must obey the following

constraint,

where the symbol () means spatial integration over the whole

domain of the nuclear core. The factor T (t) is called the amplitude

function. Note that [Sa, t)] represents in some sense the total num

ber of neutrons in the reactor, but that this number depends on the

weight function. As the constraint on [SCi', t)] does not depend on

time, the shape function may change in time, but its integral is time

independent. 'Thus T(t) itself represents the neutron population

change in the reactor.

We can now obtain a differential equation for the time dependent vari

able T(t) by replacing [<\l(r, t)] by the product [SCi', t)]T(t) in the

space-time kinetics equations, by pre-multiplying the resulting equa

tions by [W(r)]T and by integrating over the whole core volume, We

thus obtain
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D

- ([W]T I 13i[X~][v~rlT [S])T(t)
i = 1

D

+ I Ai([W]T[X~]Ci)
i = 1

where, in order to conform to certain conventions, we have added and

subtracted the term in

D

I 13i[X~][V~f]T[S]
i ~ I

Very similar operations are performed on the precursor equations,

that we pre-multiply by [W]T [xf] before integrating over space to get

We now define the following quantities

([W]T [xfJC)

([W]T[v]-l[Sj)
(EQ 74)
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1\(t) = D

<[W1T{(l - (3)[xPl + ;~1 f3;[x?l }[VlrlT[Sl)

111

(EO 75)

< [W1T[x?HvlrJT[S])
= f3; D (EO 76)

<[W1
T
{(1 - (3)[xPl + ;~1 f3;[x?l }[VlrlT[Sl)

(

D

f3(I) = I f3;(I)
i = 1

(EQ 77)

p= D ~m

< [W1T{(l- (3)[lJ + i~lf3j[X?J}[VlrlT[SJ>

With these definitions, the space-time kinetics equations become

D

!!..T = P -=- f3T + I AjCj
dt " j = I

d f3 i-c- = -T - AoCdt 1 A I 1

which are the point kinetics equations.
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Point Kinetics Approximation

112

112

Up to now, there are no approximations in the point kinetics formula

tion. However, the parameters p(t), I3j(t) and i\(t) depend, by defini

tion, on the shape function [S (r, t)].

Knowing [SCi', tIl means in turn knowing the neutron flux

[<p(r, t)]which necessitates a complete spatial solution. It then

becomes very difficult to determine the point kinetics parameters.

The most common way of resolving this is to replace [S(r, tIl by a

function depending only on space, denoted by [S (f)] . This function

usually comes from the static solution of the reactor in the initial state

before perturbation, were applied to it. In this case, the parameters can

only be approximate.

In effect, the l3 i and A lose their time dependence. The reactivity

depends on the temporal variations of the cross-sections and of the

diffusion coefficients. But these are now applied to a shape function

that is not representative of the actual state of the reactor during the

transient.

In this case, it can be shown that the choice of the weight function

[W] , which we have left arbitrary, can influence the precision of the

solution of the point kinetics equations. In fact, the amplitude T(t)

depends very strongly on the reactivity p(t). We wont show it here,

but it can be proven that if the weight function is the adjoint flux of the

initial static reactor, then the error in the reactivity estimation is much
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reduced. It follows then that the error on the 'solution will be reduced

too.

In spite of all these difficulties, point kinetics is still the most widely

used method in kinetics. This comes from the small number of equa

tions to solve, together with only one spatia! (static, initial) calculation

to do. However this apparent simplicity hides many difficulties.

Analytic Solution

Finding analytic solutions to the point kinetics equations can teach

much about the dynamics of a nuclear core. We examine this problem

here.

Define a vector

[IJI] =

and the following matrix
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r' ~~ Al A2 . AD

13 1
-AI

A

[RJ = 13 2
- ).·2

A
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so that the point kinetics equations become

(EQ80)

114

In general, the reactivity varies in a complicated fashion in time. We

chose a time interval during which reactivity is relatively constant.

This is a step approximation of the function p(t).

Reactivity will thus be constant in the time interval that we consider,

and this simplifies the sought analytic solution.

We now introduce a vector [WJ related to the vector [wJ by the appli

cation of a linear transformation [rJ '

[WJ = [rJ [WJ

System (80) then becomes,
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which can be written

115

(EQ81)

where we have used the fact that in the time interval when reactivity is

constant, so is [rJ a constant.

If the linear operator [rJ is chosen such that it diagonalizes the matrix

in system (8I), we have

(EQ 82)

where ['2li] is a diagonal matrix. The individual elements of [tV] are

easy to calculate in this basis, becoming simply

Using the inverse of the linear transformation will give

which becomes
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We only have to find the elements of the [rJ matrix, as well as the wi'

To get them, we reconsider systems (81) and (82), which give

A result of linear algebra1 shows that the elements of the diagonal

matrix [21'J are the eigenvalues of the matrix [R] ' and that the col

umns of the [rJ matrix are then made of the corre!fonding eigenvec

tors. Further-mor-e, the elements of the matrix [rJ have as lines the

eigenvectors of the (pmpedy normalized) adjoint system. The prob

lem is thus the same as calculating the eigenvalue-eigenvector problem

of the matrix [RJ .

To cal<.:ulate the eigenvalues, we only have to find the values of wi that

will make the determinant of the matrix [R - ~)l~ equal to zero,

which gives rise to the equation

Let us expand this determinant along the first column of the matrix

[R - Wi~ .We find easily that

D D

{(
P - ~ ) ". ~/"i } n
~-w +i:-:A(A;+W) j=I(-~'i-W) 0

I. ... for example J. H.WIlkinson, The Algebraic lligenYalue Problem, Oxford University
Press, Oxford, 1965.
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If we remark that w = - Ai is not a root of this expression, then the

w must necessarily be the solutions of

or, after a slight rearrangement of the various terms,

D

P _ wA + L J3 j w
i = tAj + w

(EQ 83)

This is Nordheim's equation, whose zeroes can only be found approxi

mately (Newton's method, etc.) when more than three delayed neutron

families are at play.

Mer calculating the eigenvalues, we have to calculate the eigenvectors,

which we denote by

ui
0

u i

[ur
t

=
u~

u i
0

where the index i indicates that the eigenvector belongs to the eigen

value wi'
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In this type of calculation, there is always an element of the eigenvector

that can be chosen arbitrarily. We take as first element of the eigenvec

tor a value of I. With such a choice, we will have

1

ui
[ur - u~

ub

In order to find the other components, we only have to solve the sys

tem

or, in more direct terms,

[, - ~-w
1

1
Ai A2 ADA I

13\ u i

I
-A\-Wi

\
A

132 =
-A2-oo i u~A

I3D
-AD-ooJ 'hjL A

We then get

o

o

o

o
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and it becomes possible to construct the matrix [rl '

119

[rJ ==

1 1

13 1 13 1

A(A I + wo) A(A I + wI)

~2 ~2

A(A2 + wO) A(A2 + wI)

I 130 13 0

l1\(Ao + W o) A(Ao + WI)

1

~I

AU'I + wo)

132

A(A2 + Wo)

The matrix [rJ -I can be obtained by direct inversion of [rJ or by
solving the adjoint problem, which is much easier than direct inversion

We then get that
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Ai A2 AD
1

AD + WoAi + Wo A2 + Wo

Ai A2 AD
1

AD + wI[rJ c:
Ai + wI A2 + wi

120
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The proportionality sign is used to emphasize that the lines of the

matrix has p..ot been normalized with the columns of [rJ .This fina!

step is left to the reader.

The determination of the wi shows that they differ a lot one from the

other, the minimum being about r ~ ~ , whereas the maximum is

greater than - AI in all cases, and greater than 0 if p > 0 .Such a large

spread in eigenvalues will cause difficulties to the numerical methods

used for solving the point kinetics equations. The system of equations

is a stiff system.

Conclusion

We can then conclude on the following observations:

1. With more than one group of delayed neutwns, the analytic solution of the point
kinetics equationsb~omesdifficult to get.
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2. It is impossible to find a true amlytic solution, because Nordheim's equation (83)

is transcendental in the wi •which can then only be obtained through numerical

methods.

3. The eigenvectors of the adjoint problem must be calculated, or the matrix [rJ
must be directly inv~rted.

4. As the reactivity changes in time, all this work has to be done at each time inter
val

Because of all this, the analytic solution of the point kinetics equations

constitutes a method which is too costly and difficult to be considered

practical.
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